
Public

SMART CONTRACT AUDIT REPORT

for

Syrupal

Prepared By: Xiaomi Huang

PeckShield
September 12, 2024

1/20 PeckShield Audit Report #: 2024-229

contact@peckshield.com


Public

Document Properties

Client Syrupal
Title Smart Contract Audit Report
Target Syrupal
Version 1.0
Author Xuxian Jiang
Auditors Daisy Cao, Xuxian Jiang
Reviewed by Xiaomi Huang
Approved by Xuxian Jiang
Classification Public

Version Info

Version Date Author(s) Description
1.0 September 12, 2024 Xuxian Jiang Final Release
1.0-rc September 5, 2024 Xuxian Jiang Release Candidate #1

Contact

For more information about this document and its contents, please contact PeckShield Inc.

Name Xiaomi Huang
Phone +86 183 5897 7782
Email contact@peckshield.com

2/20 PeckShield Audit Report #: 2024-229



Public

Contents

1 Introduction 4
1.1 About Syrupal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.2 About PeckShield . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
1.3 Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
1.4 Disclaimer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2 Findings 9
2.1 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.2 Key Findings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

3 Detailed Results 11
3.1 Accommodation of Non-ERC20-Compliant Tokens . . . . . . . . . . . . . . . . . . . 11
3.2 Revisited isMarketExist() Logic in PositionManager . . . . . . . . . . . . . . . . . . 13
3.3 Improved Validation on Function Arguments . . . . . . . . . . . . . . . . . . . . . . 14
3.4 Suggested Adherence of Checks-Effects-Interactions . . . . . . . . . . . . . . . . . . 15
3.5 Trust Issue Of Admin Keys . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

4 Conclusion 18

References 19

3/20 PeckShield Audit Report #: 2024-229



Public

1 | Introduction

Given the opportunity to review the design document and related smart contract source code of
the Syrupal protocol, we outline in the report our systematic approach to evaluate potential security
issues in the smart contract implementation, expose possible semantic inconsistencies between smart
contract code and design document, and provide additional suggestions or recommendations for
improvement. Our results show that the given version of smart contracts can be further improved
due to the presence of several issues related to either security or performance. This document outlines
our audit results.

1.1 About Syrupal

Syrupal is a cutting-edge decentralized exchange for derivatives, focusing on options and structured
products. It leverages off-chain order matching, with trades executed transparently through smart
contracts. Unlike other AMM-based protocols or those that price options off-chain, Syrupal is a fully
on-chain options DeFi project. It implements the Black-Scholes-Merton (BSM) pricing model through
smart contracts, ensuring greater transparency. Syrupal utilizes real-time price data and volatility
data to ensure the accuracy of options pricing. The basic information of Syrupal is as follows:

Table 1.1: Basic Information of Syrupal

Item Description
Target Syrupal
Type EVM Smart Contract

Language Solidity
Audit Method Whitebox

Latest Audit Report September 12, 2024

In the following, we show the Git repository of reviewed files and the commit hash values used
in this audit.

• https://github.com/SyrupalTech/v1-core.git (a7c7e8c)

4/20 PeckShield Audit Report #: 2024-229



Public

And this is the commit ID after all fixes for the issues found in the audit have been checked in:

• https://github.com/SyrupalTech/v1-core.git (9e2433f)

1.2 About PeckShield

PeckShield Inc. [11] is a leading blockchain security company with the goal of elevating the secu-
rity, privacy, and usability of current blockchain ecosystems by offering top-notch, industry-leading
services and products (including the service of smart contract auditing). We are reachable at Telegram
(https://t.me/peckshield), Twitter (http://twitter.com/peckshield), or Email (contact@peckshield.com).

Table 1.2: Vulnerability Severity Classification

Im
pa
ct

High Critical High Medium

Medium High Medium Low

Low Medium Low Low

High Medium Low

Likelihood

1.3 Methodology

To standardize the evaluation, we define the following terminology based on OWASP Risk Rating
Methodology [10]:

• Likelihood represents how likely a particular vulnerability is to be uncovered and exploited in
the wild;

• Impact measures the technical loss and business damage of a successful attack;

• Severity demonstrates the overall criticality of the risk.

Likelihood and impact are categorized into three ratings: H, M and L, i.e., high, medium and
low respectively. Severity is determined by likelihood and impact and can be classified into four
categories accordingly, i.e., Critical, High, Medium, Low shown in Table 1.2.

To evaluate the risk, we go through a list of check items and each would be labeled with
a severity category. For one check item, if our tool or analysis does not identify any issue, the

5/20 PeckShield Audit Report #: 2024-229

https://t.me/peckshield
http://twitter.com/peckshield
contact@peckshield.com


Public

Table 1.3: The Full List of Check Items

Category Check Item

Basic Coding Bugs

Constructor Mismatch
Ownership Takeover

Redundant Fallback Function
Overflows & Underflows

Reentrancy
Money-Giving Bug

Blackhole
Unauthorized Self-Destruct

Revert DoS
Unchecked External Call

Gasless Send
Send Instead Of Transfer

Costly Loop
(Unsafe) Use Of Untrusted Libraries
(Unsafe) Use Of Predictable Variables
Transaction Ordering Dependence

Deprecated Uses
Semantic Consistency Checks Semantic Consistency Checks

Advanced DeFi Scrutiny

Business Logics Review
Functionality Checks

Authentication Management
Access Control & Authorization

Oracle Security
Digital Asset Escrow
Kill-Switch Mechanism

Operation Trails & Event Generation
ERC20 Idiosyncrasies Handling
Frontend-Contract Integration

Deployment Consistency
Holistic Risk Management

Additional Recommendations

Avoiding Use of Variadic Byte Array
Using Fixed Compiler Version
Making Visibility Level Explicit
Making Type Inference Explicit

Adhering To Function Declaration Strictly
Following Other Best Practices

6/20 PeckShield Audit Report #: 2024-229



Public

contract is considered safe regarding the check item. For any discovered issue, we might further
deploy contracts on our private testnet and run tests to confirm the findings. If necessary, we would
additionally build a PoC to demonstrate the possibility of exploitation. The concrete list of check
items is shown in Table 1.3.

In particular, we perform the audit according to the following procedure:

• Basic Coding Bugs: We first statically analyze given smart contracts with our proprietary static
code analyzer for known coding bugs, and then manually verify (reject or confirm) all the issues
found by our tool.

• Semantic Consistency Checks: We then manually check the logic of implemented smart con-
tracts and compare with the description in the white paper.

• Advanced DeFi Scrutiny: We further review business logics, examine system operations, and
place DeFi-related aspects under scrutiny to uncover possible pitfalls and/or bugs.

• Additional Recommendations: We also provide additional suggestions regarding the coding and
development of smart contracts from the perspective of proven programming practices.

To better describe each issue we identified, we categorize the findings with Common Weakness
Enumeration (CWE-699) [9], which is a community-developed list of software weakness types to
better delineate and organize weaknesses around concepts frequently encountered in software devel-
opment. Though some categories used in CWE-699 may not be relevant in smart contracts, we use
the CWE categories in Table 1.4 to classify our findings.

1.4 Disclaimer

Note that this security audit is not designed to replace functional tests required before any software
release, and does not give any warranties on finding all possible security issues of the given smart
contract(s) or blockchain software, i.e., the evaluation result does not guarantee the nonexistence
of any further findings of security issues. As one audit-based assessment cannot be considered
comprehensive, we always recommend proceeding with several independent audits and a public bug
bounty program to ensure the security of smart contract(s). Last but not least, this security audit
should not be used as investment advice.

7/20 PeckShield Audit Report #: 2024-229



Public

Table 1.4: Common Weakness Enumeration (CWE) Classifications Used in This Audit

Category Summary
Configuration Weaknesses in this category are typically introduced during

the configuration of the software.
Data Processing Issues Weaknesses in this category are typically found in functional-

ity that processes data.
Numeric Errors Weaknesses in this category are related to improper calcula-

tion or conversion of numbers.
Security Features Weaknesses in this category are concerned with topics like

authentication, access control, confidentiality, cryptography,
and privilege management. (Software security is not security
software.)

Time and State Weaknesses in this category are related to the improper man-
agement of time and state in an environment that supports
simultaneous or near-simultaneous computation by multiple
systems, processes, or threads.

Error Conditions,
Return Values,
Status Codes

Weaknesses in this category include weaknesses that occur if
a function does not generate the correct return/status code,
or if the application does not handle all possible return/status
codes that could be generated by a function.

Resource Management Weaknesses in this category are related to improper manage-
ment of system resources.

Behavioral Issues Weaknesses in this category are related to unexpected behav-
iors from code that an application uses.

Business Logics Weaknesses in this category identify some of the underlying
problems that commonly allow attackers to manipulate the
business logic of an application. Errors in business logic can
be devastating to an entire application.

Initialization and Cleanup Weaknesses in this category occur in behaviors that are used
for initialization and breakdown.

Arguments and Parameters Weaknesses in this category are related to improper use of
arguments or parameters within function calls.

Expression Issues Weaknesses in this category are related to incorrectly written
expressions within code.

Coding Practices Weaknesses in this category are related to coding practices
that are deemed unsafe and increase the chances that an ex-
ploitable vulnerability will be present in the application. They
may not directly introduce a vulnerability, but indicate the
product has not been carefully developed or maintained.

8/20 PeckShield Audit Report #: 2024-229



Public

2 | Findings

2.1 Summary

Here is a summary of our findings after analyzing the Syrupal implementation. During the first phase
of our audit, we study the smart contract source code and run our in-house static code analyzer
through the codebase. The purpose here is to statically identify known coding bugs, and then
manually verify (reject or confirm) issues reported by our tool. We further manually review business
logic, examine system operations, and place DeFi-related aspects under scrutiny to uncover possible
pitfalls and/or bugs.

Severity # of Findings
Critical 0

High 0

Medium 1

Low 3

Informational 1

Total 5

We have so far identified a list of potential issues: some of them involve subtle corner cases
that might not be previously thought of, while others refer to unusual interactions among multiple
contracts. For each uncovered issue, we have therefore developed test cases for reasoning, reproduc-
tion, and/or verification. After further analysis and internal discussion, we determined a few issues
of varying severities that need to be brought up and paid more attention to, which are categorized in
the above table. More information can be found in the next subsection, and the detailed discussions
of each of them are in Section 3.

9/20 PeckShield Audit Report #: 2024-229



Public

2.2 Key Findings

Overall, these smart contracts are well-designed and engineered, though the implementation can
be improved by resolving the identified issues (shown in Table 2.1), including 1 medium-severity
vulnerability, 3 low-severity vulnerabilities, and 1 informational recommendation.

Table 2.1: Key Syrupal Audit Findings

ID Severity Title Category Status
PVE-001 Low Accommodation of Non-ERC20-

Compliant Tokens
Coding Practices Resolved

PVE-002 Low Revisited isMarketExist() Logic in
PositionManager

Business Logic Resolved

PVE-003 Low Improved Validation of Function Ar-
guments

Business Logic Resolved

PVE-004 Informational Suggested Adherence of Checks-
Effects-Interactions

Time and State Resolved

PVE-005 Medium Trust Issue Of Admin Keys Security Features Mitigated

Beside the identified issues, we emphasize that for any user-facing applications and services, it is
always important to develop necessary risk-control mechanisms and make contingency plans, which
may need to be exercised before the mainnet deployment. The risk-control mechanisms should kick
in at the very moment when the contracts are being deployed on mainnet. Please refer to Section 3
for details.

10/20 PeckShield Audit Report #: 2024-229



Public

3 | Detailed Results

3.1 Accommodation of Non-ERC20-Compliant Tokens

• ID: PVE-001

• Severity: Low

• Likelihood: Low

• Impact: Low

• Target: Delegate

• Category: Coding Practices [6]

• CWE subcategory: CWE-1126 [1]

Description

Though there is a standardized ERC-20 specification, many token contracts may not strictly follow the
specification or have additional functionalities beyond the specification. In this section, we examine
the approve() routine and analyze possible idiosyncrasies from current widely-used token contracts.

In particular, we use the popular stablecoin, i.e., USDT, as our example. We show the related
code snippet below. On its entry of approve(), there is a requirement, i.e., require(!((_value != 0)

&& (allowed[msg.sender][_spender] != 0))). This specific requirement essentially indicates the need
of reducing the allowance to 0 first (by calling approve(_spender, 0)) if it is not, and then calling a
second one to set the proper allowance. This requirement is in place to mitigate the known approve()/

transferFrom() race condition (https://github.com/ethereum/EIPs/issues/20#issuecomment-263524729).

194 /**
195 * @dev Approve the passed address to spend the specified amount of tokens on behalf

of msg.sender.
196 * @param _spender The address which will spend the funds.
197 * @param _value The amount of tokens to be spent.
198 */
199 f unc t i on approve ( address _spender , u in t _value ) pub l i c on l yPay l o adS i z e (2 ∗ 32) {

201 // To change the approve amount you first have to reduce the addresses ‘
202 // allowance to zero by calling ‘approve(_spender , 0)‘ if it is not
203 // already 0 to mitigate the race condition described here:
204 // https :// github.com/ethereum/EIPs/issues /20# issuecomment -263524729
205 r equ i r e ( ! ( ( _value != 0) && ( a l l owed [msg . sender ] [ _spender ] != 0) ) ) ;

11/20 PeckShield Audit Report #: 2024-229



Public

207 a l l owed [msg . sender ] [ _spender ] = _value ;
208 Approva l (msg . sender , _spender , _value ) ;
209 }

Listing 3.1: USDT Token Contract

Because of that, a normal call to approve() is suggested to use the safe version, i.e., safeApprove()
, In essence, it is a wrapper around ERC20 operations that may either throw on failure or return false
without reverts. Moreover, the safe version also supports tokens that return no value (and instead
revert or throw on failure). Note that non-reverting calls are assumed to be successful. Similarly,
there is a safe version of transfer() as well, i.e., safeTransfer().

38 /**
39 * @dev Deprecated. This function has issues similar to the ones found in
40 * {IERC20 -approve}, and its usage is discouraged.
41 *
42 * Whenever possible , use {safeIncreaseAllowance} and
43 * {safeDecreaseAllowance} instead.
44 */
45 function safeApprove(
46 IERC20 token ,
47 address spender ,
48 uint256 value
49 ) internal {
50 // safeApprove should only be called when setting an initial allowance ,
51 // or when resetting it to zero. To increase and decrease it, use
52 // ’safeIncreaseAllowance ’ and ’safeDecreaseAllowance ’
53 require(
54 (value == 0) (token.allowance(address(this), spender) == 0),
55 "SafeERC20: approve from non -zero to non -zero allowance"
56 );
57 _callOptionalReturn(token , abi.encodeWithSelector(token.approve.selector ,

spender , value));
58 }

Listing 3.2: SafeERC20::safeApprove()

In current implementation, if we examine the InsuranceFund::constructor() routine, it is used
to initially approve the spending allowance to the USDC contract. To accommodate the specific
idiosyncrasy, there is a need to use safeApprove(), instead of approve() (line 54).

48 constructor(IPositionManager _manager , IUSDX _usdx , address _operator) {
49 manager = _manager;
50 usdx = _usdx;
51 operator = _operator;
52
53 stablecoin = usdx.stablecoin ();
54 stablecoin.approve(address(_usdx), type(uint256).max);
55 }

Listing 3.3: InsuranceFund::constructor()

12/20 PeckShield Audit Report #: 2024-229



Public

Note the resetApproval() routine in the same contract can be similarly improved.

Recommendation Accommodate the above-mentioned idiosyncrasy about ERC20-related
approve().

Status The issue has been addressed in the following commit: 9e2433f.

3.2 Revisited isMarketExist() Logic in PositionManager

• ID: PVE-002

• Severity: Low

• Likelihood: Low

• Impact: Low

• Target: PositionManager

• Category: Business Logic [7]

• CWE subcategory: CWE-841 [4]

Description

The Syrupal protocol has a core PositionManager contract that manages active markets as well as each
user SubAccount as a unique ERC721 token ID. Naturally, it provides a number of helper routines to
access active markets and user accounts. While examining the logic behind a specific isMarketExist()

routine, we notice it can be improved by thoroughly validating all possible input cases.
To elaborate, we show below the implementation of the related isMarketExist() routine. As the

name indicates, this routine is designed to check whether a given market ID exists. It comes to
our attention that the implementation misses the corner case about market 0. And market 0 should
not be consider as present, which requires to revise the logic to be if (marketId > lastMarketId ||

marketId == 0)revert Errors.NotExistMarket().

734 /// @notice Check whether a given market ID exists
735 /// @param marketId The market ID to check
736 function isMarketExist(uint256 marketId) public view {
737 if (marketId > lastMarketId) revert Errors.NotExistMarket ();
738 }

Listing 3.4: PositionManager::isMarketExist()

Recommendation Revise the above logic of isMarketExist() to properly check whether the
given market ID exists.

Status The issue has been addressed in the following commit: 9e2433f.

13/20 PeckShield Audit Report #: 2024-229

https://github.com/SyrupalTech/v1-core/commit/9e2433f
https://github.com/SyrupalTech/v1-core/commit/9e2433f


Public

3.3 Improved Validation on Function Arguments

• ID: PVE-003

• Severity: Low

• Likelihood: Low

• Impact: Low

• Target: PositionManager

• Category: Coding Practices [6]

• CWE subcategory: CWE-1126 [1]

Description

DeFi protocols typically have a number of system-wide parameters that can be dynamically configured
on demand. The Syrupal protocol is no exception. Specifically, if we examine the PositionManager con-
tract, it has defined a number of protocol-wide risk parameters, such as IMLowerRatio and IMUpperRatio

. In the following, we show the corresponding routines that allow for their changes.

659 f unc t i on setMarg inParams ( uint256 market Id , MarginParams c a l l d a t a params ) ex te rna l
on l yOpe r a to r {

660 i sMa r k e t E x i s t ( market Id ) ;
661
662 i f ( params . IMUpperRat io > UNIT params . IMLowerRatio > UNIT params . MMRatio >

UNIT) {
663 r e ve r t E r r o r s . I n va l i dMarg inPa rams ( ) ;
664 }
665
666 marginParams [ market Id ] = params ;
667
668 emit MarginParamsSet ( market Id , params . IMUpperRatio , params . IMLowerRatio , params .

MMRatio ) ;
669 }

Listing 3.5: PositionManager::setMarginParams()

These parameters define various aspects of the protocol operation and maintenance and need
to exercise extra care when configuring or updating them. Our analysis shows the update logic on
these parameters can be improved by applying more rigorous sanity checks. Based on the current
implementation, the above routine can be improved by further enforcing the following requirement:
params.IMLowerRatio < params.IMUpperRatio.

Moreover, in the USDX contract, the deposit() function can be improved by validating the given
recipientAccount is legitimate and have its owner. The withdraw() function can be improved to ensure
the receive is not address(0), i.e., require(receiver != address(0).

Recommendation Validate any changes regarding these system-wide parameters to ensure
they fall in an appropriate range.

Status The issue has been addressed in the following commit: 9e2433f.

14/20 PeckShield Audit Report #: 2024-229

https://github.com/SyrupalTech/v1-core/commit/9e2433f


Public

3.4 Suggested Adherence of Checks-Effects-Interactions

• ID: PVE-004

• Severity: Informational

• Likelihood: N/A

• Impact: N/A

• Target: USDX

• Category: Time and State [8]

• CWE subcategory: CWE-663 [3]

Description

A common coding best practice in Solidity is the adherence of checks-effects-interactions principle.
This principle is effective in mitigating a serious attack vector known as re-entrancy. Via this
particular attack vector, a malicious contract can be reentering a vulnerable contract in a nested
manner. Specifically, it first calls a function in the vulnerable contract, but before the first instance
of the function call is finished, second call can be arranged to re-enter the vulnerable contract by
invoking functions that should only be executed once. This attack was part of several most prominent
hacks in Ethereum history, including the DAO [13] exploit, and the Uniswap/Lendf.Me hack [12].

We notice an occasion where the checks-effects-interactions principle is violated. Using the
USDX as an example, the _withdraw() function (see the code snippet below) is provided to externally
call a token contract to transfer assets. However, the invocation of an external contract requires
extra care in avoiding the above re-entrancy.

Apparently, the interaction with the external contract (line 199) starts before effecting the update
on internal state (lines 201-209), hence violating the principle. In this particular case, if the external
contract has certain hidden logic that may be capable of launching re-entrancy via the very same
_withdraw() function. Note that there is no harm that may be caused to current protocol. However, it
is still suggested to follow the known checks-effects-interactions best practice. Note the deposit()

routine can be similarly improved.

184 f unc t i on _withdraw ( uint256 account Id , uint256 amount , address r e c i p i e n t ) i n t e r n a l {
185 uint256 exchangeRate = _getExchangeRate ( ) ;
186
187 uint256 stab leAmount = amount . mu l t i p l yDe c ima l ( exchangeRate ) . f rom18Dec imals (

s t a b l eDe c ima l ) ;
188
189 s t a b l e c o i n . s a f eT r a n s f e r ( r e c i p i e n t , s tab leAmount ) ;
190
191 _balanceAdjustment (
192 BalanceAdjustment ({
193 accoun t I d : account Id ,
194 a s s e t : IUSDX( address ( t h i s ) ) ,
195 sub Id : 0 ,
196 amount : −(amount . t o I n t 256 ( ) )
197 }) ,

15/20 PeckShield Audit Report #: 2024-229



Public

198 ""
199 ) ;
200
201 emit Withdraw ( account Id , r e c i p i e n t , amount , stab leAmount ) ;
202 }

Listing 3.6: USDX::_withdraw()

In the meantime, we should mention that the supported tokens in the protocol do implement
rather standard ERC20 interfaces and their related token contracts are not vulnerable or exploitable
for re-entrancy.

Recommendation Apply necessary reentrancy prevention by following the checks-effects-

interactions best practice.

Status The issue has been addressed in the following commit: 9e2433f.

3.5 Trust Issue Of Admin Keys

• ID: PVE-005

• Severity: Low

• Likelihood: Low

• Impact: Low

• Target: Multiple Contracts

• Category: Security Features [5]

• CWE subcategory: CWE-287 [2]

Description

In the Syrupal protocol, there is a privileged owner account that plays a critical role in governing and
regulating the protocol-wide operations (e.g., configuring various system parameters and assigning
various roles). In the following, we show the representative functions potentially affected by the
privilege of the owner account.

589 function setOperator(address _newOperator) external onlyOwner {...}
590 ...
591 function setLiquidator(address _liquidator , bool _trusted) external onlyOperator

{...}
592 ...
593 function setExecutor(address _executor , bool _trusted) external onlyOperator {...}
594 ...
595 function setDiscount(uint64 _discount) external onlyOperator {...}
596 ...
597 function setMarketOracles(
598 uint256 marketId ,
599 ISpotOracle spotOracle ,
600 IForwardOracle forwardOracle ,
601 IVolatilityOracle volOracle
602 ) external onlyOperator {...}

16/20 PeckShield Audit Report #: 2024-229

https://github.com/SyrupalTech/v1-core/commit/9e2433f


Public

603 ...
604 function setStableOracle(ISpotOracle _stableOracle) external onlyOperator {...}
605 ...
606 function setMarginParams(uint256 marketId , MarginParams calldata params) external

onlyOperator {...}
607 ...
608 function setDepegParams(DepegParams calldata params) external onlyOperator {...}
609 ...
610 function setFeeRecipient(uint256 _newRecipient) external onlyOperator {...}
611 ...
612 function setFeeExemption(address caller , bool exempted) external onlyOperator {...}

Listing 3.7: Example Privileged Operations in Factory

We emphasize that the privilege assignment is necessary and consistent with the protocol design.
However, it is worrisome if the owner is not governed by a DAO-like structure. Note that a compromised
account would allow the attacker to modify a number of sensitive system parameters, which directly
undermines the assumption of the protocol design.

Recommendation Promptly transfer the privileged account to the intended DAO-like governance
contract. All changed to privileged operations may need to be mediated with necessary timelocks.
Eventually, activate the normal on-chain community-based governance life-cycle and ensure the in-
tended trustless nature and high-quality distributed governance.

Status The issue has been confirmed and will be mitigated with the use of a multi-sig to
manage the owner.

17/20 PeckShield Audit Report #: 2024-229



Public

4 | Conclusion

In this audit, we have analyzed the design and implementation of Syrupal, which is a cutting-edge
decentralized exchange for derivatives, focusing on options and structured products. It leverages off-
chain order matching, with trades executed transparently through smart contracts. Unlike other AMM-
based protocols or those that price options off-chain, Syrupal is a fully on-chain options DeFi project. It
implements the Black-Scholes-Merton (BSM) pricing model through smart contracts, ensuring greater
transparency. Syrupal utilizes real-time price data and volatility data to ensure the accuracy of options
pricing. The current code base is well structured and neatly organized. Those identified issues are
promptly confirmed and addressed.

Meanwhile, we need to emphasize that smart contracts as a whole are still in an early, but exciting
stage of development. To improve this report, we greatly appreciate any constructive feedbacks or
suggestions, on our methodology, audit findings, or potential gaps in scope/coverage.

18/20 PeckShield Audit Report #: 2024-229



Public

References

[1] MITRE. CWE-1126: Declaration of Variable with Unnecessarily Wide Scope. https://cwe.

mitre.org/data/definitions/1126.html.

[2] MITRE. CWE-287: Improper Authentication. https://cwe.mitre.org/data/definitions/287.html.

[3] MITRE. CWE-663: Use of a Non-reentrant Function in a Concurrent Context. https://cwe.

mitre.org/data/definitions/663.html.

[4] MITRE. CWE-841: Improper Enforcement of Behavioral Workflow. https://cwe.mitre.org/

data/definitions/841.html.

[5] MITRE. CWE CATEGORY: 7PK - Security Features. https://cwe.mitre.org/data/definitions/

254.html.

[6] MITRE. CWE CATEGORY: Bad Coding Practices. https://cwe.mitre.org/data/definitions/

1006.html.

[7] MITRE. CWE CATEGORY: Business Logic Errors. https://cwe.mitre.org/data/definitions/

840.html.

[8] MITRE. CWE CATEGORY: Concurrency. https://cwe.mitre.org/data/definitions/557.html.

[9] MITRE. CWE VIEW: Development Concepts. https://cwe.mitre.org/data/definitions/699.

html.

19/20 PeckShield Audit Report #: 2024-229

https://cwe.mitre.org/data/definitions/1126.html
https://cwe.mitre.org/data/definitions/1126.html
https://cwe.mitre.org/data/definitions/287.html
https://cwe.mitre.org/data/definitions/663.html
https://cwe.mitre.org/data/definitions/663.html
https://cwe.mitre.org/data/definitions/841.html
https://cwe.mitre.org/data/definitions/841.html
https://cwe.mitre.org/data/definitions/254.html
https://cwe.mitre.org/data/definitions/254.html
https://cwe.mitre.org/data/definitions/1006.html
https://cwe.mitre.org/data/definitions/1006.html
https://cwe.mitre.org/data/definitions/840.html
https://cwe.mitre.org/data/definitions/840.html
https://cwe.mitre.org/data/definitions/557.html
https://cwe.mitre.org/data/definitions/699.html
https://cwe.mitre.org/data/definitions/699.html


Public

[10] OWASP. Risk Rating Methodology. https://www.owasp.org/index.php/OWASP_Risk_

Rating_Methodology.

[11] PeckShield. PeckShield Inc. https://www.peckshield.com.

[12] PeckShield. Uniswap/Lendf.Me Hacks: Root Cause and Loss Analysis. https://medium.com/

@peckshield/uniswap-lendf-me-hacks-root-cause-and-loss-analysis-50f3263dcc09.

[13] David Siegel. Understanding The DAO Attack. https://www.coindesk.com/

understanding-dao-hack-journalists.

20/20 PeckShield Audit Report #: 2024-229

https://www.owasp.org/index.php/OWASP_Risk_Rating_Methodology
https://www.owasp.org/index.php/OWASP_Risk_Rating_Methodology
https://www.peckshield.com
https://medium.com/@peckshield/uniswap-lendf-me-hacks-root-cause-and-loss-analysis-50f3263dcc09
https://medium.com/@peckshield/uniswap-lendf-me-hacks-root-cause-and-loss-analysis-50f3263dcc09
https://www.coindesk.com/understanding-dao-hack-journalists
https://www.coindesk.com/understanding-dao-hack-journalists

	Introduction
	About Syrupal
	About PeckShield
	Methodology
	Disclaimer

	Findings
	Summary
	Key Findings

	Detailed Results
	Accommodation of Non-ERC20-Compliant Tokens
	Revisited isMarketExist() Logic in PositionManager
	Improved Validation on Function Arguments
	Suggested Adherence of Checks-Effects-Interactions
	Trust Issue Of Admin Keys

	Conclusion
	References

